

CONTENTS

- 1. 특집기사
 - 텐센트연구원(騰訊研究院), '2023 디지털 전환 지수 보고' 발표
- 2. 정책동향
 - - 중국, '23년 상반기 20종의Ⅰ급 신약과 25개의 삐급 의료기기 출시
 - 과기부, 국가 차세대 인공지능 공공연산력 플랫폼 선정

 - 화웨이, 5.5G 등 5대 혁신기술 소개
 - 중국과학기술정보연구소 외. '2022 글로벌 인공지능 혁신지수 보고' 발표
- 3. 기술동향
 - 중국, 12인치 2차원 반도체 웨이퍼 대규모 생산기술 확보
 - 신장(新疆)이화연구소, 신형의 비선형 광학결정 개발

- 텐센트는 '2023 디지털 전환 지수 보고'를 발표하고 정보, 바이오, 에너지, 제조, 재료 우주 등 6대 분야를 미래산업으로 선정했다. 특히 AI 기업은 '22년 기준 6천여 개에 달하며 대형언어 모델 개발에 주력하고 있는 것으로 나타났다.
- 국가약품감독관리국(NMPA)는 '23년 상반기에 14개 화학 신약, 5개 바이오 신약, 1개 중약 신약을 포함해 전체 20개 1급 신약 출시를 허가하였다.
- 과기부는 '국가 차세대 인공지능 발전계획'의 일환으로 추진하고 있는 인공지능 공공연산력 플랫폼 건설 지역으로 우한, 다롄, 주하이 등을 승인하여 총 9개 지역 내에 스마트 컴퓨팅 네트워크가 건설될 예정이다.
- 화웨이는 '2023 혁신 및 지재권 포럼'에서 5.5G, HDR·오디오 Vivid, 10단 가변 조리개, GOD(General Obstacle Detection) 네트워크 및 운영 알고리즘 등 5대 혁신기술을 공개하였다.
- '2022 글로벌 인공지능 혁신지수 보고'에 따르면 미국의 인공지능 혁신지수는 4년 연속 1위를 유지하고 있으며, 중국은 최근 3년 연속 2위로 바짝 추격하고 있다.

특집기사

01

텐센트연구원(騰訊研究院), '2023 디지털 전환 지수 보고' 발표

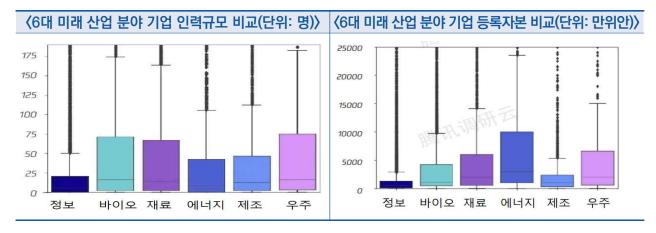
- 미래 산업 기업 중 정보기업은 광동, 베이징, 상하이에, 바이오기업은 지린, 윈난, 헤이룽장에 많이 분포 (7.15)
 - 텐센트연구원(騰訊研究院)은 '23년 미래산업을 **정보, 바이오, 에너지, 제조, 재료 및 우주** 등 6대 분야로 구분하고 중국 내 총 55,000 개 기업을 대상으로 조사
 - 가장 많은 기술분야는 정보분야로 나타났으며, 세부 영역으로는 **인공지능**, 블록체인, AR·VR, 광·전자 칩, 차세대 정보기술, 위성인터넷, 양자 정보 등으로 구분

〈6대 미래 산업 및 세부 기술〉

정보분0;	에너지분야	제조분야	재료분0;	우주분야	바이오분야
 인공지능 블록체인 VR, AR 광전자칩 차세대정보기술 위성인터넷 양자정보 	 수소 태양광 바이오매스 품력 원자력 기타 	○ 로봇○ 스마트제조○ 고급 공작기계	○ 신소재 ○ 고급 신소재	 우주항공 해양공정장비, 고기술 선박 등 항공엔진, 가스터빈 심우주, 심해, 심지와 국지탐축 	바이오산업 바이오기술 유전자/바이오 기술 뇌과학/뇌모방


- * 출처: 2023 디지털 전환 지수 보고
- 지역별로 보면 주로 베이징, 광둥성, 상하이, 장쑤성, 저장성 등 지역에 집중되어 있음

* 출처: 2023 디지털 전환 지수 보고


6대 미래 산업 중 정보 분야와 바이오 분야의 기업 수가 가장 많았으며 그 다음으로 재료, 제조, 에너지, 우주 분야 순임

- * 출처: 2023 디지털 전환 지수 보고
- 정보 분야 기업 수가 가장 많은 5대 도시는 광둥성, 베이징, 상하이, 푸젠성, 저장성을 들 수 있음
- 중국 내 바이오 분야 기업들은 주로 지린성, 윈난성, 헤이룽장(黑龍江)성, 간쑤성과 광시성에 집중 〈분야별 미래 산업 기업 수가 가장 많은 Top 5 지역〉

미래산업	세분 분야	상위 5위 지역
정보 분야	인공지능, 블록체인, 광·전자칩, 양자정보 등	광둥, 베이징, 상하이, 푸젠, 저장
바이오 분야	바이오, 유전자, 뇌과학 및 뇌 모방 연구 등	지란, 윈난, 헤이룽장, 간쑤, 광시
재료 분야	신소재, 고급 신소재 등	네이멍구, 장시, 칭해, 후난, 안후이
제조 분야 로봇, 스마트 제조, 고급 공작기계		장쑤, 랴오닝, 광둥, 닝샤, 산둥
에너지 분야 수소, 태양광, 바이오 매스, 풍력, 원자력 등		티벳, 칭해, 닝샤, 신장, 네이멍구
우주 분야 우주항공, 해양장비 및 고기술 선박 등		귀저우, 산시, 랴오닝, 헤이룽장, 베이징

- 미래 산업 기업은 인력 규모가 200명 이하인 혁신형 중소기업이 대부분을 차지했으며, 인력 규모와 등록자본은 분야별로 다르게 나타남
 - (자본) 정보 분야는 등록 자본금이 가장 낮은 반면, 에너지, 우주 재료 분야는 높음
 - (인력 규모) 바이오, 재료 및 우주 분야의 기업 인력 수는 다른 분야에 월등히 높은 편임

AI 분야는 최근 2년간 급속도로 성장을 하여 다양한 AI 기업들이 대형 모델 개발에 집중

- 2000년 이후 중국 AI 분야의 기업 수는 지속적으로 증가했으며 2022년 기준 중국 내 AI 기업 수가 6,000개에 달함
 - 2015년부터 2018년까지 3년 동안 가장 높은 성장률을 기록했으며, 2020년 이후에는 코로나 영향으로 신규 등록 기업 수가 감소했지만, 누적된 기업 기준으로 증가되는 추세임

〈중국 내 AI 기업 수 변화 추이(단위:개)〉

● 중국 내 AI 스타트업 기업들은 대형 언어 모델 개발에 집중하고 있는 추세임
〈중국 인공지능 스타트업 기업의 대형 언어 모델 연구현황〉

대표업체	설립시기	주요내용	소재지
MiniMax	2021.12	• 대형 언어 모델 제품 Glow 출시, 진산(金山) 오피스 WP5 Al 지원	상하이
광녠즈와이(光年之外)	2023.4	• 안전한 범용 인공지능 (AGI)를 실현할 목표 수립	베이징
즈푸(智 谱)	2019.6	• 중국어-영어 이중 언어가 가능한 대화 모델 GLM-130B 출시	베이징
란저우커지(澜舟科技)	2021.6	• 맹자시전훈련모형(孟子预训练模型)을 기반으로시범시업구축	베이징
베촨지능(百川智能)	2023.4	• 70억 파라미터급 오픈 소스 중국어-영어 대형 모델 baichuan-7B 발표	베이징
심연커지(深言科技)	2022.3	• 텍스트 생성, 텍스트 교정과 스타일 검사 효율 향상을 위한 기술 개발	베이징
mobvoi(出门问问)	2014.3	• '시퀀스 원숭(序列猴子)' 대형 언어 모델 출시	베이징
디스판스(第四范式)	2014.9	• '시숴3.0(式说3.0)'발표, 처음으로 AIGS 전략 제시	베이징
시노베이션벤처스 (创新工场)	2023.3	• Al2.0 플랫폼 및 Al-first 생산력 구축	베이징
링신즈넝(聆心智能)	2021.11	• '초의인(拟人)대형 언어 모형' 구축, '유토피아' 플랫폼 출시	베이징

● 대학, 연구기관들은 범용 AI, 오픈 소스, AI 윤리 등 분야에서 AI 연구개발을 활발히 추진 중 〈주요 대학·연구기관 인공지능 개발 현황〉

기관명	설립시기	주요내용	소재지
베이징지위안 인공지능연구원 (北京智源人工智能研究院)	2018	• '23. 6, '오도(悟道) 3.0' 모델 을 출시했으며 그중 천영 대형 언어 모델, FlagEval 대형 언어 모델 평가·예측 시스템, 대형 시각 모델 등 포함	베이징
칭화인공지능산업연구원 (AIR)	2020	• '23. 4, 오픈 소스 경량판 BioMedGPT 를 개발하여, 주로 바이오 의료 분야 R&D 활용	베이징
웨강아오대만구 디지털경제연구원 (IDEA)	2020	 '21년 '봉신방(封神榜)' 대형 모델 시리즈를 발표하고 '봉신 방(封神榜)' 오픈 소스 프로젝트를 정식 가동 '23년 5월 중국 최초의 오픈 소스 중국어 text-to-image 인공지능 모델인 '태을(太乙) Stable Diffusion'와 다중 모드 시 범용 대형 모델 '강자아(姜子牙) '출시 	선전
펑청(鹏城)실험실	2018	• '23. 5, AI 범용 대형 모델 ' 펑청·노하이(脑海)'을 발표하고 화 웨이와 공동으로 '펑청 윈노(云脑)II' 스마트 컴퓨팅 인프라 건설	선전
저장대학 항저우 국제과학기술 혁신센터	2019	• '23. 4, 단백질 언어 사전 훈련 모델 발표	항저우
즈강(之江) 실험실	2017	• '22. 8, ' 즈강 천추(天 枢) ' 인공자능 오픈 소스 플랫폼 3.0 발표	항저우
상하이 인공지능 실험실	2020	 '22. 9, 'OpenXLab 푸원(浦源)' 인공지능 오픈소스 시스템 발표 '23. 4, 글로벌 일기예보 대형 모델 '풍우(风乌)' 출시 '23. 6, 1040억 매개 변수급 대형 모델 '수생·푸어(书生·浦语)' 출시 	상하이
인민대 가오링(高瓴)인공지능 학부	2019	 '21. 6, '문란(文澜) BriVL2.0' 출시 '23. 3, 다중 모드 대형 모델 '원승상(元乘象)ChatImg' 발표 	베이징
중국과학원 자동화연구소	1956	• '23. 6, 차세대 AI 모델 쯔둥타이추(紫 东 太初) 2.0 발표	상하이
푸단대학 자연어 처리 실험실	1980년대	• '23. 2,대화형 대형 모델 Moss 발표, 2023년 4월 업그레이드 버전 출시	상하이

참고자료

☞ 腾讯研究院发布《数字化转型指数报告 2023》 https://mp.weixin.qq.com/s/oOzRKs6BoCxbPXhqN8un7Q

정책동향

중국, '23년 상반기 20종의 | 급 신약과 25개의 비급 의료기기 출시

■ 재발성 골수암 등 생물학적 제제와 자기공명 레이저장치 등 의료기기 출시 (7.17)

- '23년 7월 기준, 국가약품감독관리국(NMPA)은 **총 28개 제품(20종)**의 Ⅰ급 혁신 의약품 시판을 승인
 - 동시기 FDA가 새로 승인한 분자신약은 18종과 생물학적 제제(BLA) 10종을 포함해 총 63종의 신약(NDA/BLA)를 승인했으며, EU의 EMA는 총 25종의 신약을 승인
 - 중국은 화학의약품 19개 제품(14종), 생물학적 제제 8개 제품(5종) 및 중약 신약 1개를 포함하여 **총 28개 제품(20종)**의 혁신 의약품 의약품을 출시
 - **총 19개 기업이 해당되며, 그 중 베이다(**贝达**)제약**은 2종의 화학의약품을 승인, **쉰루(驯鹿)제약** 등 5개 기업은 생물학적 제제를 승인, **쓰지(思济)제약**이 유일한 중약 신약을 승인받음
 - 그 외 미국의 Takeda, eVENUS 등 해외 기업이 중국시장에서 2종의 화학의약품이 승인됨

〈'23년 상반기 출시된 28개 제품의 1급 신약 리스트〉

등록일	제품명	기업	유형	적응증
1	mobocertinib (수입)	Takeda사	화학의약품	비소세포폐암
2	Cenotevir/Ritonavir	하이난 셴성(先声)제약	화학의약품	경·중증 코로나19
3	VV116	상하이 왕스(旺实)바이오제약	화학의약품	경·중증 코로나19
4	Keverprazan	난징 커페이핑(柯菲平)제약	화학의약품	십이지장 궤양, 역류성 식도염
5	Adebrelimab	쑤저우 성디야(盛迪亚)바이오제약	생물학적 제제	소세포폐암(ES-SCLC)
6	Glum etinib	장쑤 하이허(海和)제약	화학의약품	비소세포폐암
7	Leritrelvir	광동 중성뤼촹(众生睿创)바이오제약	화학의약품	경·중증 코로나19
8	로타바이러스 생백신	란저우 생물학적 제제연구소	생물학적 제제	로타바이러스 유발 영유아 설사
9	Orfosbuvir	난징 성허(圣和)제약	화학의약품	만성 C형 간염(HCV)
10	Zuberitamab	저장 보루이(博锐)바이오제약	생물학적 제제	B형 대세포 림프종
11	Befotertinib	항저우 베이다(贝达)제약*	화학의약품	비소세포 폐암

7/全전략

등록일	제품명	기업	유형	적응증
12	Vorolanib	항저우 베이다(贝达)제약	화학의약품	말기 신장세포암
13	삼욱영신편(参郁宁神 片)	광동 쓰지(思济)제약	중약	경·중증 우울증
14	Anaprazole	베이징 쉬안주(轩竹)제약	화학의약품	십이지장 궤양
15	Iruplinalkib	산동 치루(齐鲁)제약	화학의약품	비소세포 폐암
16	Retagliptin	장쑤 헝루이(恒瑞)제약	화학의약품	성인 ॥형 당뇨병
17	Oteseconazole (수입)	eVENUS사	화학의약품	중증 질외음부 캔디다증(VVC)
18	Pegmolesatide	장쑤 하오선(豪森)제약*	화학의약품	만성 신장질환성 빈혈
19	Telpegfilgrastim	샤먼 터바오(特宝)제약*	생물학적 제제	암환자 화학치료 후 감염 방지
20	Equecabtagene	난징 쉰루(驯鹿)바이오제약	생물학적 제제	재발성 골수암

- * 주석 : 베이다(贝达)제약과 하오선(豪森)제약은 같은 유형의 3개 제품을 각각 출시하고, 터바오(特宝)바이오제약은 같은 유형의 4개 제품을 출시
- '23년 상반기, 국가약품감독관리국(NMPA)은 글로벌 의료기기 분야에서 총 25개의 Ⅲ급 혁신 장치의 시판을 승인
 - 동시기 FDA는 총 1,575개의 제품을 승인했으며, 정형외과기기, 일반기기, 성형외과기기, 방사선장치, 심혈관 장치 및 종합병원 등이 승인
 - 총 25개 승인된 의료기기 중 미국, 한국, 캐나다 등 해외 의료기기업은 인슐린 주입시스템, 콜라겐 연골 재생 스텐트, 인공수정체, 혈관내 영상설비 등 기기를 출시

〈총 25개의 Ⅲ급 혁신기기 시판 승인 목록〉

	제품명	기업		제품명	기업
1	환자 간호장비	선전 커만(科曼)의료설비회사	14	관상동맥 중재시술 제어시스템	Corindus Inc
2	인슐린 주입시스템	미국 Medtronic MiniMed	15	결장 내시경 소프트웨어	선전 의료젠캉(醫療健康)회사
3	혈액투석 요소 제거율 계산 소프트웨어	베이징 잉푸메이(英福美)회사	16	탄소중입자 치료시스템	란저우 커진타이지(科近泰基)회사
4	콜라겐 연골 재생 스텐트	한국 Ubiosis Co.	17	이식형 좌심실 보조시스템	선전 허신(核心)의료회사
5	자기공명 레이저장치	베이징 화커(華科)정밀의료기기 회사	18	다모드 종양치료시스템	상하이 메이제(美杰)의료회사
6	관상동맥 CT 혈류계산 소프트웨어	상하이 보어둥(博動)의료회사	19	이식형 천골 신경 자극기	항저우 청눠(承諾)의료회사

	-11-77-04	=101			7101
	제품명	기업		제품명	기업
7	일회성 레이저 광섬유	베이징 화커(華科)정밀의료기기 회사	20	이식형 천골 신경 자극 연장 도선	항저우 청눠(承諾)의료회사
8	인공수정체	미국 Alcon Laboratories, Incorporated	21	이식형 천골 신격 자극 전극	항저우 청눠(承諾)의료회사
9	관상동맥 기능 측량시스템	쑤저우 쑨마이더 (潤邁德)의료회사	22	천자술 항법시스템	베이징 전젠캉(眞健康)의료회사
10	흉요추 금속 보형물	베이징 아이캉의청(愛康宜誠) 의료회사	23	지르코늄-니오브 합급 인공뼈	쑤저우 미소침습관절의료회사
11	소화기계통 내시경 소프트웨어	우한 추징링(楚精靈)의료회사	24	복강 내시경 수술시스템	베이징 수루이(術銳)기기회사
12	혈관 내 영상설비	캐나다 Conavi Medical Inc.	25	두경부 X-Ray 방사선 치료시스템	ZAP Surgical Systems.Inc.
13	방사성치료 소프트웨어	상하이 롄잉(聯影)의료회사			

○ 지역적 분포를 보면, 국내 생산 등록 제품(I, II, III급)에 대한 가장 많은 승인은 광동성(919건),
 장쑤성(676건), 허난성(521건)으로 나타남

〈국내 생산 등록 제품의 지역별 분포〉

참고자료

☑ 2023上半年药械创新成果报告:国内20款创新药获批上市 https://mp.weixin.qq.com/s/_U6fVraoALa5wL_Nk-d3Ig

과기부, 국가 차세대 인공지능 공공연산력 플랫폼 선정

- 과기부는 우한, 다롄, 주하이 등 9대 국가 차세대 인공지능 공공연산력 플랫폼 건설 승인(7.17)
 - 올해 3월, 중국 과기부와 국가자연과학기금위원회(NSFC) 는 공동으로 '인공지능 혁신 과학연구 (AI for Science)' 프로젝트를 가동
 - 과기부는 '인공지능 주도형 과학연구' 전용 플랫폼을 구축하고 '국가 차세대 인공지능 공공연 산력 개방·혁신 플랫폼 '건설 가속화
 - 이 플랫폼은 '국가 차세대 인공지능 발전 계획'의 중요한 구성 부분으로 인공지능과 실물 경제의 심층 통합을 추진하고 중국의 스마트 컴퓨팅 네트워크 건설에 추진하는 데 목적이 있음
 - 최근 과기부는 우한, 다롄 등 제1차 국가 차세대 인공지능 공공연산력 플랫폼 명단을 발표 (9대 국가 차세대 인공지능 공공연산력 플랫폼)

	(왕대 국가 자세대 신승사당 당당신전복 글짓몹/				
구분	플랫폼	주요 내용			
1	우한 인공지능 컴퓨팅 센터	 회중(华中) 지역 최초의 국가급 인공지능 공공연산력 개방·혁신 플랫폼으로 현재까지 300여 개의 연구기관, 기업, 대학을 대상으로 공공연산력 서비스를 제공 1개 센터(컴퓨팅 센터)와 4대 플랫폼(공공연산력 서비스 플랫폼, 응용 혁신 인큐베이팅 플랫폼, 산업 모집 발전 플랫폼, 과학연구 혁신 및 인재 양성 플랫폼)을 중심으로 산업 클러스터를 구축 			
2	다롄 인공지능 컴퓨팅 센터	 다롄 인공지능 컴퓨팅 센터는 동북지역 최대한 연산력 규모를 갖춘 인공지능 컴퓨팅 센터로 지난해 12월 초부터 국가 연산력 네트워크에 가입했음 현재 센터의 연산력 사용률은 90%를 초과하여 200개 이상의 대학, 연구기관과 기업을 대항으로 연산력 서비스를 제공 중 특히 미시커지(觅视科技) 등 기업과 협력하여 스마트 제조, 스마트 항구, 스마트 의료 등 9대 분야에서 차세대 인공지능 시범사업 구축 			
3	시안 미래 이공지능 컴퓨팅 센터	 서부지역 최초의 대규모 인공지능 컴퓨팅 클러스터로 현재까지 이미 153 개의 연구기관, 기업, 대학을 대상으로 공공연산력 서비스를 제공하고 17개의 과학연구 프로젝트를 매칭하였으며, 인공지능 고급 인재 약 1,000명 양성 시안전자과기대학 등 대학과 공동으로 '친링(秦岭)·원격 감지 뇌 모델'등 천억 위안급 인공지능 대형 언어 모델을 개발 			
4	난징 인공지능 컴퓨팅 센터	 난징 인공지능 컴퓨팅 센터는 기린(麒麟) 과학기술 혁신 산업단지와 인공지능 업체인 한무기(寒武纪·Cambricon)가 공동으로 설립한 인 공지능 컴퓨팅 센터임 단백질 접힘, 천문 연구, 우주 탐색, 자율주행 등 과학기술 프론티어 분야를 대상으로 서비스를 제공하고 난징시의 차세대 신흥산업 발전을 위한 연산력을 지원 			

구분	플랫폼	주요 내용
5	배의장 어센드(昇腾) 인공지능 컴퓨팅 센터	 현재 센터의 인공지능 훈련 연산력 규모가 100P에 달했고 2023년에는 400P에 도달할 예정이며 최종적으로 1000P로 확장할 계획 스마트 의료, 스마트 제조, 스마트 교통, 스마트 금융 등 다양한 분야의 인공지능 기업과 연구 기관에게 강력한 컴퓨팅과 기술지원 제공 특히 ChatGLM-6B, 화웨이 '开源盘古'등 인공지능 오픈 소스 대형모델 개발에 지원
6	청두 인공지능 컴퓨팅 센터	 1개 센터(국가 일체화 빅데이터센터)와 3대 플랫폼(인공지능 연산력 플랫폼, 도시 브레인(智脑) 플랫폼과 과학기술 혁신 플랫폼)으로 구성 현재 청두 인공지능 컴퓨팅 센터의 연산력 점유율은 95% 이상이며 약 50개의 연구기관, 대학을 대상으로 서비스를 제공, 공동연구를 통해 '蓉城·夔牛', '空天·灵眸' 등 인공지능 모델을 출시
7	심양 인공지능 컴퓨팅 센터	 '데이터, 알고리즘, 연산력' 3대 요소를 중심으로 공공연산력 서비스 플랫폼, 응용 혁신 인큐베이팅 플랫폼, 산업 모집 발전 플랫폼, 과학연구 혁신 및 인재 양성 플랫폼 등 4대 플랫폼 구축 2022년 심양시 정부가 심양 인공지능 컴퓨팅 센터 건설에 5.5억 위안을 투입했으며 현재까지 1기 프로젝트 완성 향후 센터의 연산력 규모는 400P에 달성할 전망
8	한저우 즈강실험실 (之江实验室)	 지장 야오광(瑶光) 인공지능 컴퓨팅 운영 체제는 대규모 컴퓨팅 작업, 데이터 기반 컴퓨팅 작업, 일반과 맞춤형 개발 컴퓨팅 작업을 포함한 다양한 시범사업 지원 동시스템은 서로 다른 계산 작업에 소속하는 알고리즘, 함수 또는 프레임워크를 제공할 수 있으며 연산력 취합과 데이터 배열 능력 보유
9	광둥성 인공지능 과학 및 기술연구원(주하이 소재)	 뇌모방 핵심 알고리즘, 뇌모방 인공지능 컴퓨팅 모델 및 스마트 컴퓨팅 시스템을 개발하고 인공지능 정보기술을 개발에 주력 인공지능, 빅데이터, 블록체인, 고 연산력 칩, 바이오 의약, 금융 공상, 메타버스 등 스마트산업 생태계 조성 동 연구원은 세계적인 스마트 컴퓨팅 과학 연구와 공공 서비스 플랫폼 구축할 목표 수립

참고자료

♥ AI+算力"国家队"! 9家获批科技部"国智牌照" https://mp.weixin.qq.com/s/w_JS2U5UYemQIFwbDHOC-A

화웨이, 5.5G 등 5대 혁신기술 소개

■ 5.5G, 자율주행, 핸드폰 카메라 등 발전 촉진 (7.14)

- 최근 화웨이는 '2023 혁신 및 지재권 포럼'에서 5.5G, HDR·오디오 Vivid, 10단 가변 조리개, GOD(General Obstacle Detection) 네트워크 및 운영 알고리즘 등 5대 혁신 기술을 소개
- 1) 사물인터넷, 커넥티드카 등 분야에 응용되는 5.5G 기술
 - 화웨이의 5.5G 기술은 기존의 5G 기초위에 **업링크 중심 광대역 통신(UCBC), 실시간 광대역 통신(RTBC), 조화로운 통신 및 센싱(HCS)** 등 3대 응용 확대

〈화웨이	5.5G 7	기술 혁신	특징〉
------	--------	-------	-----

	구분	특징
1	혼합현실(MR)/확장현실(XR)	 전송 지연 시간을 다운링크 유비쿼터 10Gbps급, 업링크 유비쿼터 1Gbps급으로 각각 단축시켜 MR 및 XR의 대규모 응용을 가능케 함 라이브 방송, 자율주행 및 스마트로봇 등 분야 응용 전망이 높음
2	사물인터넷	 최초로 Passive IoT 기술을 구현시켜 기존의 Cellular IoT 접속 규모를 100억급에서 1,000억급으로 향상 물류, 자동차제조, 전력 및 목축업 등 분야 응용 전망이 높음
3	커넥티드카	 5.5G 기지국은 통신 기초기능 위에 주변 감지 기능을 추가해 통신-감지 일체화 구현 차량 인프라 협력시스템(IVICS) 등 분야 응용 전망이 밝음
4	스마트 제조	• 5.5G 시대 초고신뢰·저지연통신(URLLC) 역량을 한층 더 향상시켜 산 업제어 등 핵심 생산프로세스 분야 응용 촉진

- 2) 몰입형 시청각 체험 HDR·오디오 Vivid 표준
 - 화웨이 HDR Vivid는 **다이나믹 메타데이터, 톤 매핑(Tone Mapping)** 등 신기술을 사용한 영상기술로 풍부한 컬러의 몰입형 시각 체험 구현

〈화웨이 HDR 몰입형 시청각 체험 이미지〉

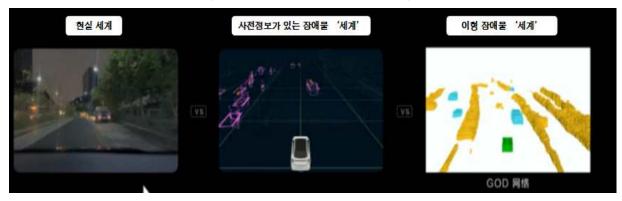
- 오디오 Vivid 는 AI 기술을 최초로 사용한 오디오코딩 표준으로서 맞춤형 3차원 음성 등 차세대 오디오 기술(NGA) 특성을 구현

〈화웨이 HDR·오디오 Vivid 표준 특징〉

	구분	특징
1	HDR Vivid	 화면의 밝기는 4000nits로 기존 보다 40배 향상, 컬러 구현율은 전통적 인 SDR 기술보다 72% 향상 톤 매핑 알고리즘 기술로 현실 세계와 흡사한 시각 체험 가능
2	오디오 Vivid	 혼합형 AI 코딩 프레임을 사용해 전통적인 심리성학 이론과 심층학습의 우위 겸비 HOA (Higher Order Ambisonic) 공간 코딩 기술을 사용하였으며 그 성능이 세계 선진수준에 도달

- 3) 핸드폰 고화질 촬영 체험 10단 가변 조리개
 - HUAWEI MATE 50 시리즈 핸드폰 카메라에 최초로 **10단 가변 조리개 기술을** 사용해 촬영에 영향을 미치는 빛 정밀 제어

〈화웨이 10단 가변 조리개 이미지〉


〈화웨이 10단 가변 조리개 특징〉

	구분	특징
1	구조 및 블레이드 설계	 고정 구조, 전동 구조 외 머리카락 두께의 6개 블레이드로 구성 자기장 감지용 홀 센서(Hall sensor)를 사용해 블레이드 개폐 위치 확정
2	소프트웨어 설계	 자동 모델을 설정하면 4단 가변 조리개로 변화할수 있도록 설계 Al 기술로 피사체 범위와 빛의 밝기를 자동으로 식별하여 조리개의 개폐 위치를 설정

- 4) 자율주행 GOD(General Obstacle Detection) 네트워크
 - 카메라, 밀리파 레이더, 레이저 레이더 등의 신호를 융합하여 **자기지도학습(SSL)**이 가능하여 행인, 차량 등 상규적인 물체 외에도 사전 정보가 없는 이형 장애물도 주도적으로 감지 가능

〈화웨이 GOD 네트워크 감지 이미지〉

〈화웨이 GOD 네트워크의 기술 특징〉

	구분	특징
1	자기지도학습 역량	• GOD 기술은 대량의 원시 센서 데이터를 이용한 자기지도학습(SSL)이 가능하기 때문에 사전 정보가 없는 낙석 등 이형 장애물도 감지 가능
2	자율주행 역량	ADS 2.0 상태의 고속 MPI 수준을 기존의 100km에서 200km로 향상 우수한 장애물 대응 역량으로 도심 속 자율주행율 90% 실현 가능

5) 운영 효율성 알고리즘

- 공항, 공장, 물류 등 다양한 분야의 사업 아이템을 수학적 데이터로 모형화해 제한된 시간 내 최적 운영 솔루션 제시
- 자사의 ToB 및 ToC 분야 풍부한 기술적 노하우를 바탕으로 제한된 자원조건에서 시스템 운영효율을 향상시키고 원가를 낮추는 운영 알고리즘 개발

참고자료

▽华为五大创新技术公布

https://mp.weixin.qq.com/s/6phvH9vIY6b398N79uOyyg

중국과학기술정보연구소 외, '2022 글로벌 인공지능 혁신지수 보고' 발표

■ 미국 AI 혁신지수 4년 연속 1위, 중국 최근 3년 연속 2위 차지(7.18)

- 최근 개최된 2023 글로벌 인공지능 포럼에서 중국과학기술정보연구소와 베이징대학은 공동으로 '2022 글로벌 인공지능 혁신지수 보고'를 발표
 - 평가지표인 인프라, 혁신자원·환경, 연구개발, 산업·응용을 기준으로, '19년부터 매년 발표
 - '22년부터 '인공지능 국제화' 1급 지표 신규 추가
- 1) 미국과 중국은 인공지능 혁신지수 50점 이상으로 1등급 차지
- 미국의 인공지능 혁신지수는 4년 연속 1위를 차지하고 중국은 최근 3년 연속 2위를 차지
- 2등급(35~50점)은 **영국, 독일, 싱가포르** 등 11개 국가가 해당되고, 3등급(20~35점)은 덴마크, 핀란드. 벨기에 등 12개 국가가 차지
- 최근 3년간 변화를 보면 **영국**이 '20년도 6위에서 '22년도 **3위**로 향상되고, **한국**은 '20년도 3위에서 '22년도 **8위**로 하락


〈'2022 글로벌 인공지능 혁신지수 보고'의 주요국 득점 및 순위 변화〉

〈22년도 주요국 득점〉			년도 주요국 득점〉	('20~'22년간 주요국의 순위 변화〉
	 순위	국가	 득점	東西 井田 東西 和田 和田県 田本大日本 和田 いらか 瀬本 洋田 本大村道 日本 社会
. = -	1	美国	72.23	2022# O O O O O O O O O O O O
1등급	2	中国	55.20	
253	3	英国	46.59	
2등급	4	德国	44.45	
	5	新加坡	44.00	PER TO
	6	加拿大	43.82	2021年
	7	日本	43.03	
	8	韩国	41.79	
	9	以色列	39.30	
	10	瑞典	39.19	
		法国	38.01	
	11 12	澳大利亚	37.98	2020年 🐧 👩 🐧 🐧 🐧 🐧 🐧 🐧 🐧 🐧 🐧
	13	荷兰	35.52	

- 2) 중국은 전체 11개의 2급 지표 중 '교육'과 '산업'을 제외한 9개 지표에서 모두 미국보다 낙후
 - 특허, 논문, 인재 3개 지표에서는 미국을 거의 추격하고 있으며, 네트워크 인프라 수준도 크게 향상
 - 단, 알고리즘, 응용, 국가 R&D 투입, 표준 및 학술연구 국제화, 혁신제도 5개 지표에서 미국과 큰 격차를 보임

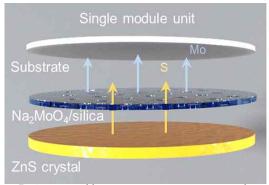
〈'2022 글로벌 인공지능 혁신지수 보고' 중 중미간 2급 지표 비교〉

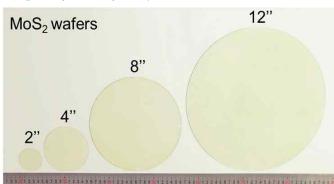
- 3) 글로벌 인공지능산업은 혁신제도, 연산력 인프라, 산업화 수준, 기초연구 촉진 등 방면에서 발전단계에 진입
 - (혁신제도) '22년 한해 거의 모든 평가대상국의 혁신제도 지표 득점이 향상되었으며, 특히 영국, 싱가포르, 호주 등 국가는 크게 향상
 - (연산력 인프라) 전체 1/3 평가대상국의 **데이터센터** 수가 '20년 대비 10% 이상 증가하였으며, **미국, 영국, 독일** 등의 글로벌 500대 **슈퍼컴퓨팅센터** 보유량 지속 증가
 - * 중국이 보유한 글로벌 500대 슈퍼컴퓨팅센터의 글로벌 비중은 '20년의 45%에서 '22년의 35%로 감소
 - (산업화) '22년 한해 평가대상국 전체의 **인공지능기업** 수는 전년 대비 **25%** 증가하고, 인공지능분야 **종사자** 수도 전년 대비 **53%** 증가
 - (기초연구) 전자, 통신, 컴퓨터과학 등 정보기술 주제 외에도 **환경과학, 지리과학, 소재과학** 등 기초과학 주제의 인공지능 논문 수도 지속 증가해 그 비중이 '22년에 **10%**로 향상

참고자료

♥《2022全球人工智能创新指数报告》发布 https://mp.weixin.qq.com/s/7mBZ0XKGKCgeK6vxc7YQEQ

기술동향


01


중국, 12인치 2차원 반도체 웨이퍼 대규모 생산기술 확보

■ 2차원 반도체 웨이퍼 사이즈는 2인치에서 12인치로 확장 실현(7.11)

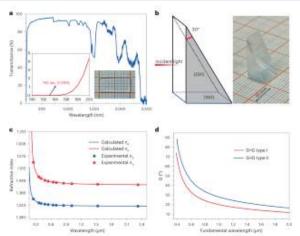
- 숭산호(松山湖)재료실험실 류카이후이(劉開輝) 연구팀은 12인치 2차원 전이금속 황화물 (TMDCs) 웨이퍼 제조 기술 개발에 성공
 - 2차원 이전금속 황화물은 유망한 2차원 반도체 소재 중 하나로 초고속 응답 속도, 운반 이동성 등 장점을 보유
 - 현재 화학기상증착법(CVD)로 제조된 2차원 반도체 웨이퍼의 크기는 주로 2~4인치이며, 생산 효율이 떨어져 2차원 반도체 기초연구와 산업화제조 방면에서 수요와의 격차가 존재
 - 연구팀은 모듈형 로컬 영역 원소 공급 성장 기술을 개발하여 2~12인치 전이금속 황화물 웨이퍼 제조기술을 확보
 - 향후 2차원 반도체 웨이퍼의 대규모 생산을 위한 새로운 기술 솔루션을 제공하여 고성능 전자학 과 광·전자 기술 산업화를 추진할 전망

〈12인치 2차원 전아금속 황화물(TMDCs) 구조〉

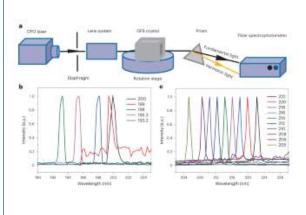
* 출처: https://www.sciencedirect.com/science/article/abs/pii/S2095927323004206?via%3Dihub

참고자료

♥ 我国突破12英寸二维半导体晶圆批量制备技术 https://baijiahao.baidu.com/s?id=1771027860834077203&wfr=spider&for=pc



신장(新疆)이화연구소, 신형의 비선형 광학결정 개발


■ 반도체 웨이퍼 검사 등 분야 응용 전망이 밝은 신형 비선형 광학결정 개발 (6,25)

- 중국과학원 신장이화연구소의 판스례(潘世烈) 교수는 **주파수 전대역 위상매칭 방법**으로 레이저 광원의 파장을 고효율적으로 변화시킬 수 있는 GFB 비선형 광학결정을 개발
 - 레이저 광원의 파장은 고정되어 있어서 비선형 광학결정 등 다양한 방식으로 그 주파수를 변형 시켜 이용해왔는데, 기존의 방법으로는 모두 파장 손실이 발생
 - 연구진은 **복굴절 위상 매칭(**birefringent phase matching) **기술**에 기반해 파장 손실이 없는 전대역 위상 매칭 연구 방향을 혁신적으로 제시하여 신형의 GFB 비선성 광학결정을 개발
 - GFB 결정은 532 나노, 355 나노, 266 나노 및 213 나노 등 특수파장의 레이저를 획득할 수 있어서 반도체 웨이퍼 검사 등 분야 응용이 가능
 - 관련 논문은 Nature Photonics지에 온라인으로 게재

〈GFB 결정의 선형 및 비선형 특성〉

〈GFB 결정의 특수파장 발생〉

참고자료

- ▽ 我国科学家创制新型非线性光学晶体 可高效实现激光变频
 https://www.cas.cn/cm/202307/t20230715_4929346.shtml?from=timeline
- ♥ 我国科学家创制全波段相位匹配晶体 https://www.cas.cn/cm/202307/t20230714_4929226.shtml

단신동향

01 과기부, 2022년도 결산보고서 공개

■ '22년도 결산액은 5,998,523.08만 위안(10조 8,537억 원)으로 전년 대비 1% 감소

- 과학기술지출액은 4,590,714.02만 위안(8조 3,046억)이며 주로 기초연구, 응용 연구, 기술 개발, 과기 서비스, 과학보급, 과학기술 교류·협력 등에 지출
- 중대 과학기술 프로젝트 예산 조정으로 인해 해당 결산액은 491,428.76만 위안(8,889억 9,462만 원)으로 '21년 대비 9.7% 감소

출처: 과학망 (07.26)

https://news.sciencenet.cn/htmlnews/2023/7/505511.shtm

02 칭화과기원 (清華科技園) 과학기술협회 신설

■ 칭화과기원 과협은 정부, 기업과 과기인력 간의 협력 창구로 구축

- 중국 칭화대학 부설기관인 칭화과기원은 총 1,500여 개의 과학기술형 기업과 R&D기관을 유치했으며 중국은 물론 세계적인 과학기술 단지로 부상
- 칭화과기원 과학기술협회의 설립으로 대학, 연구기관, 기업과 사회조직을 위한 과학기술 혁신 교류 플랫폼을 구축할 전망

출처: 과학망 (07.27)

https://news.sciencenet.cn/htmlnews/2023/7/505566.shtm

03 푸젠성, 신형 인프라 건설 3년 계획 발표

🔳 푸저우(福州), 샤먼(廈門) 등 지역에서 메타버스 시범구를 건설할 계획

- '25년까지 푸젠성의 신형 인프라 건설에 획기적인 성과를 이루고 디지털화·네트워크화· 지능화된 인프라 시스템 구축
- 인공지능, 블록체인, 메타버스, 빅데이터 플랫폼 등 신기술 인프라 건설에 주력

출처: 데이터관찰 (07.11)

https://mp.weixin.qq.com/s/bXjd_qTop21JNNaLOYHvqQ

04 공업정보화부 외, 중소기업 융자 촉진 액션 추진

■ 제조업 중심으로 정부-기업-금융기구 협력메커니즘 구축

- 제조업 선두주자 및 전정특신 강소기업 등 중점기업에 의뢰해 산업망 중 역할이 돋보이는 중소 기업을 선정한 후 융자수요 리스트를 작성
- 공업정보화부 주관부문은 금융기구, 디지털서비스플랫폼, 중소기업 공공서비스기구 등과 공 동으로 전문 서비스인력그룹 구성

출처: 신화망 (08.01)

http://www.news.cn/fortune/2023-08/01/c_1129781158.htm

05 창저우(常州) 신에너지자동차 전기설비산업 클러스터 활성화

■ 2023년도 장쑤성 중소기업 특색산업단지로 선정

- 산업망 내 기업 수는 3,000여개, '23년도 상반기 매출액은 537.2억 위안으로 집계되었으며 전년대비 64.4% 증가
- 창저우 비야디(比亞迪), 베이징자동차그룹 중형자동차, 둥펑(東風)자동차 창저우지사 등 3대 선두주자기업 주도로 동력시스템 및 자동차전자 등 분야 비교우위를 형성

출처: 고신망 (07.18)

http://www.chinahightech.com/html/yuanqu/yqcy/2023/0718/5680916.html

06 베이징대학, 상하이 린강(臨港)국제과기혁신센터 설립

바이오의약, AI, 반도체, 신소재 및 양자 5대 산업 방향에 주력

- 주요 목표로 기술이전과 첨단기술기업 인큐베이팅을 통해 세계적인 영향력이 있는 과기혁신플 랫폼 구축을 제시
- 센터 오픈 당일 상하이 창장삼각주기술혁신연구원, 상하이기술거래소 국제거래센터, 상하이 유니콤, 상탕커지(商汤科技) 등 9개 기관과 전략적 협력협정을 체결

출처: 인민망 (06.17)

https://news.sciencenet.cn/htmlnews/2023/7/504925.shtm

07 베이징과기대학 바이오농업연구원 설립

■ 빅데이터, AI 등 신기술로 전통적인 농업연구 방향을 전환

- 베이징대학 내 AI, 정보기술, 신소재, 기계설계·제조 등 분야 우위학과와 융합발전을 촉진하고, 클라우드컴퓨팅, 사물인터넷, 빅데이터 등 신기술로 농업연구 방향을 전환
- 식물유전자연구센터, 바이오육종연구센터, 스마트농업연구센터, 음식물영양연구센터, 지속 가능농업·바이오경제연구센터 외 핑구(平谷) 바이오농업연구원 운영

출처: 과학망 (07.13)

https://news.sciencenet.cn/htmlnews/2023/7/504639.shtm

KOREA-CHINA SCIENCE & TECHNOLOGY COOPERATION CENTER

중국 과학기술 정책 주/간/동/향

| 발 행 일 | 2023. 8. 4

| 발 행 인 | 서행아

| 발행기관 | 한중과학기술협력센터

| 발 행 처 | 주소 : 북경시 조양구 주선교로 갑12호

전자성과기빌딩 1308호(100015) TEL: 86)10-6410-7876/7886

http://ww.kostec.re.kr